Thyristor \Diode Module

Phase leg

Part number

MCD95-08io1B

$\mathrm{V}_{\text {RRM }}=2 \mathrm{x} 800 \mathrm{~V}$
$\mathrm{I}_{\mathrm{TAV}}=116 \mathrm{~A}$
$\mathrm{~V}_{\mathrm{T}}=1.28 \mathrm{~V}$

Features / Advantages:

- Thyristor for line frequency
- Planar passivated chip
- Long-term stability
- Direct Copper Bonded Al2O3-ceramic

Applications:

- Line rectifying $50 / 60 \mathrm{~Hz}$
- Softstart AC motor control
- DC Motor control
- Power converter
- AC power control
- Lighting and temperature control

Package: TO-240AA

- Isolation Voltage: 4800 V~
- Industry standard outline
- RoHS compliant
- Soldering pins for PCB mounting
- Base plate: DCB ceramic
- Reduced weight
- Advanced power cycling

Disclaimer Notice

Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.

Package	TO-240AA			Ratings			
Symbol	Definition Conditions	Conditions		min.	typ.	max.	Unit
$\mathrm{I}_{\text {RMs }}$	RMS current per terminal					200	A
T_{vj}	virtual junction temperature			-40		125	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {op }}$	operation temperature			-40		100	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	storage temperature			-40		125	${ }^{\circ} \mathrm{C}$
Weight					81		g
	mounting torque					4	Nm
$M_{\text {T }}$	terminal torque			2.5		4	Nm
$\mathbf{d}_{\text {Spp/App }}$ $\mathbf{d}_{\text {spb/Apb }}$	creepage distance on surface / striking distance through air	terminal to terminal terminal to backside	$\begin{aligned} & \hline 13.0 \\ & 16.0 \\ & \hline \end{aligned}$	$\begin{array}{r} 9.7 \\ 16.0 \end{array}$			$\begin{aligned} & \mathrm{mm} \\ & \mathrm{~mm} \end{aligned}$
$\mathrm{V}_{\text {ISOL }}$	isolation voltage $\begin{array}{ll}\mathrm{t}=1 \text { second } \\ \\ \mathrm{t}=1 \text { minute }\end{array}$	$50 / 60 \mathrm{~Hz}, \mathrm{RMS}$; lisol $\leq 1 \mathrm{~mA}$		$\begin{aligned} & 4800 \\ & 4000 \end{aligned}$			V V

Date Code

Ordering	Ordering Number	Marking on Product	Delivery Mode	Quantity	Code No.
Standard	MCD95-08io1B	MCD95-08io1B	Box	36	507433

Similar Part	Package	Voltage class
MCMA110PD1200TB	TO-240AA-1B	1200
MCMA140PD1200TB	TO-240AA-1B	1200

Equivalent Circuits for Simulation *o die level $\quad \mathrm{T}_{\mathrm{vJ}}=125^{\circ} \mathrm{C}$

$\mathrm{I} \rightarrow-\mathrm{V}_{0} \quad \text { Thyristor }$			
$\mathrm{V}_{0 \text { max }}$	threshold voltage	0.85	V
$\mathbf{R}_{0 \text { max }}$	slope resistance *	1.2	$m \Omega$

Outlines TO-240AA

General tolerance: DIN ISO 2768 class „c"

Optional accessories for modules
Keyed gate/cathode twin plugs with wire length $=350 \mathrm{~mm}$, gate $=$ white, cathode $=$ red Type ZY 200L (L = Left for pin pair 4/5) UL 758, style 3751

Thyristor

Fig. 1 Surge overload current $\mathrm{I}_{\text {TSM }}$, $\mathrm{I}_{\mathrm{FSM}}$: Crest value, t : duration

Fig. $2 I^{2} t$ versus time ($1-10 \mathrm{~ms}$)

Fig. 3 Max. forward current at case temperature

Fig. 4 Power dissipation vs. on-state current \& ambient temperature (per thyristor or diode)

Fig. 6 Three phase rectifier bridge: Power dissipation vs. direct output current and ambient temperature

Fig. 5 Gate trigger characteristics

Fig. 7 Gate controlled delay time

Rectifier

Fig. 8 Three phase AC-controller: Power dissipation versus RMS output current and ambient temperature

$\mathrm{R}_{\mathrm{th} \mathrm{Jc}}$ for various conduction angles d :

d	$R_{\text {thJc }}[K / W]$
$D C$	0.22
180°	0.23
120°	0.25
60°	0.27
30°	0.28

Constants for $Z_{\text {thJc }}$ calculation:

i	$\mathrm{R}_{\mathrm{thi}}[\mathrm{K} / \mathrm{W}]$	$\mathrm{t}_{\mathrm{i}}[\mathrm{s}]$
1	0.0066	0.0019
2	0.0678	0.0477
3	0.1456	0.3440

Fig. 9 Transient thermal impedance junction to case (per thyristor/diode)

$\mathrm{R}_{\mathrm{thJK}}$ for various conduction angles d :

d	$\mathrm{R}_{\mathrm{thJK}}[\mathrm{K} / \mathrm{W}]$
DC	0.42
180°	0.43
120°	0.45
60°	0.47
30°	0.48

Constants for $Z_{\text {thJK }}$ calculation:

i	$\mathrm{R}_{\text {thi }}[\mathrm{K} / \mathrm{W}]$	$\mathrm{t}_{\mathrm{i}}[\mathrm{s}]$
1	0.0066	0.0019
2	0.0678	0.0477
3	0.1456	0.3440
4	0.2000	1.3200

Fig. 10 Transient thermal impedance junction to heatsink (per thyristor/diode)

