2MBI200XHA170-50

Power Module (X series)

1700V / 200A / 2-in-1 package

\square Features
Low $V_{\text {CE(sat) }}$
High speed switching
Low Inductance Module structure

- Applications

Inverter for Motor Drives, AC and DC Servo Drives Uniterruptible Power Supply Systems,
Industrial machines,such as Welding machines

■ Outline drawing (Unit : mm)
Characteristics indication

DETAIL TAB TYPE TERMINALS

Weight: 370 g(typ.)

Equivalent Circuit

2MBI200XHA170-50

Absolute Maximum Ratings (at $T_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise specified)

Items		Symbols	Conditions		Maximum Ratings	Units
Collector-Emitter voltage, Gate-Emitter short-circuited		$V_{\text {CES }}$			1700	V
Gate-Emitter voltage, Collecter-Emitter short-circuited		$V_{\text {GES }}$			± 20	V
Collector current		$I_{\text {c }}$	Continuous	$T_{\mathrm{C}}=100^{\circ} \mathrm{C}$	200	A
Repetitive peak collector current		$I_{\text {CRM }}$	1 ms		400	
Forward current		$I_{\text {F }}$			200	
Repetitive peak forward current		$I_{\text {FRM }}$	1 ms		400	
Total power dissipation		$P_{\text {tot }}$	1 device		1125	W
Virtual Junction temperature		$T_{\text {vj }}$			175	${ }^{\circ} \mathrm{C}$
Operating virtual junction temperature		$T_{\text {vjop }}$			175	
Case temperature		$T_{\text {c }}$			125	
Storage temperature		$T_{\text {stg }}$			-40~125	
Isolation voltage	between terminals and copper base (*1)	V isol	AC: 1 min .		4000	Vrms
Mounting torque of screws to heatsink (*2) Mounting torque of screws to terminals (*2)		-	M5 or M6		6.0	$\mathrm{N} \cdot \mathrm{m}$
		5.0				

(*1) All terminals should be connected together during the test.
(*2) Recommendable Value: Recommendable Value:
Mounting
Terminals
$3.0 \sim 6.0 \mathrm{~N} \cdot \mathrm{~m} \quad$ (M5 or M6)
$2.5 \sim 5.0 \mathrm{~N} \cdot \mathrm{~m} \quad$ (M6)

Electrical characteristics (at $T_{\mathrm{vj}}=25^{\circ} \mathrm{C}$ unless otherwise specified)

Turn on time $\left(t_{\text {on }}\right)=t_{\mathrm{d}(\text { (on })}+t_{\mathrm{r}}$, Turn off time $\left(t_{\text {off }}\right)=t_{\mathrm{d}(\text { (ff })}+t_{\mathrm{f}}$

■ Electrical characteristics (at $\boldsymbol{T}_{\mathrm{vj}}=25^{\circ} \mathrm{C}$ unless otherwise specified)

Items	Symbols	Conditions		Characteristics			Units
				min.	typ.	max.	
Switching loss (per pulse)	$E_{\text {on }}$	$V_{\text {cc }}=900 \mathrm{~V}$	$T_{\mathrm{vj}}=25^{\circ} \mathrm{C}$	-	52.7	-	mJ
		$I_{\text {C }}, I_{\text {F }}=200 \mathrm{~A}$	$T_{\text {vj }}=125^{\circ} \mathrm{C}$	-	72.2	-	
		$V_{\text {GE }}= \pm 15 \mathrm{~V}$	$T_{\text {vj }}=150^{\circ} \mathrm{C}$	-	78.6	-	
		$R_{G}=0.82 \Omega$	$T_{\text {vj }}=175^{\circ} \mathrm{C}$	-	90.3	-	
	$E_{\text {off }}$	$L_{\text {s }}=30 \mathrm{nH}$	$T_{\text {vj }}=25^{\circ} \mathrm{C}$	-	42.8	-	
			$T_{\mathrm{vj}}=125^{\circ} \mathrm{C}$	-	58.9	-	
			$T_{\text {vj }}=150^{\circ} \mathrm{C}$	-	64.3	-	
			$T_{\mathrm{vj}}=175^{\circ} \mathrm{C}$	-	68.2	-	
	$E_{\text {rr }}$		$T_{\mathrm{vj}}=25^{\circ} \mathrm{C}$	-	41.4	-	
			$T_{\text {vj }}=125^{\circ} \mathrm{C}$	-	69.5	-	
			$T_{\mathrm{vj}=} 150^{\circ} \mathrm{C}$	-	78.9	-	
			$T_{\mathrm{vj}}=175^{\circ} \mathrm{C}$	-	88.3	-	

NOTICE:

The external gate resistance $\left(R_{\mathrm{G}}\right)$ shown above is one of our recommended value for the purpose of minimum switching loss. However the optimum R_{G} depends on circuit configuration and/or environment. We recommend that the R_{G} has to be carefully chosen based on consideration if IGBT module matches design criteria, for example, switching loss, EMC/EMI, spike voltage, surge current and no unexpected oscillation and so on.

	Symbols	Conditions	Characteristics			ns
			min.	typ.	max.	
Thermal resistance (1device)	$R_{\text {th(}(\mathrm{c})}$	Inverter IGBT	-	-	0.133	K/W
		Inverter FWD	-	-	0.203	
Thermal resistance case to heat sink $(1 \text { IGBT + 1FWD) (*1) }$	$R_{\text {th(}(-s)}$	with $1 \mathrm{~W} /(\mathrm{m} \cdot \mathrm{K})$ thermal grease	-	0.0250	-	

(*1) This is the value which is defined mounting on the additional cooling fin with thermal compound.
[Inverter]
Collector current vs. Collector-Emitter voltage
$T_{\mathrm{vj}}=25^{\circ} \mathrm{C} /$ chip

[Inverter]
Collector current vs. Collector-Emitter voltage

[Inverter]
Capacitance vs. Collector-Emitter Voltage $V_{\mathrm{GE}}=0 \mathrm{~V}, f=1 \mathrm{MHz}, T_{\mathrm{vj}}=25^{\circ} \mathrm{C}$

[Inverter]
Collector current vs. Collector-Emitter voltage $T_{\mathrm{Vj}_{\mathrm{j}}}=175^{\circ} \mathrm{C} /$ chip

[Inverter]
Collector-Emitter voltage vs. Gate-Emitter $T_{\mathrm{vj}}=25^{\circ} \mathrm{C} /$ chip

[Inverter]
Dynamic Gate Charge (typ.)
$V_{\mathrm{CC}}=900 \mathrm{~V}, I_{\mathrm{C}}=200 \mathrm{~A}, T_{\mathrm{vj}}=25^{\circ} \mathrm{C}$

[Inverter]
$E_{\text {on }}$ vs. Collector current (typ.)

[Inverter]
$E_{\text {off }}$ vs. Collector current (typ.)
$V_{\mathrm{CC}}=900 \mathrm{~V}, \quad V_{\mathrm{GE}}= \pm 15 \mathrm{~V}, \quad R_{\mathrm{G}}=0.8 \Omega$

[Inverter]
$E_{r r}$ vs. Forward current (typ.)
$V_{\mathrm{CC}}=900 \mathrm{~V}, \quad V_{\mathrm{GE}}= \pm 15 \mathrm{~V}, \quad R_{\mathrm{G}}=0.8 \Omega$

[Inverter]
$E_{\text {on }}$ vs. Gate resistance (typ.)

[Inverter]
$E_{\text {off }}$ vs. Gate resistance (typ.)

[Inverter]
E_{rr} vs. Gate resistance (typ.)

Innovating Energy Technology

2MBI200XHA170-50

[Inverter]
Switching time vs. Collector current (typ.)
$V_{\mathrm{CC}}=900 \mathrm{~V}, \quad R_{\mathrm{G}}=0.8 \Omega \quad V_{\mathrm{GE}}= \pm 15 \mathrm{~V}, \quad T_{\mathrm{vj}}=25^{\circ} \mathrm{C}$

[Inverter]
Switching time vs. Collector current (typ.)
$V_{\mathrm{CC}}=900 \mathrm{~V}, \quad R_{\mathrm{G}}=0.8 \Omega \quad V_{\mathrm{GE}}= \pm 15 \mathrm{~V}, \quad T_{\mathrm{vj}}=175^{\circ} \mathrm{C}$

[Inverter]
Reverse bias safe operating area (max.)
$V_{\mathrm{GE}}= \pm 15 \mathrm{~V}, \quad R_{\mathrm{G}}=0.8 \Omega \quad T_{\mathrm{vj}}=175^{\circ} \mathrm{C}$

[Inverter]
Switching time vs. Gate resistance (typ.)
$V_{\mathrm{CC}}=900 \mathrm{~V}, I_{\mathrm{C}}=200 \mathrm{~A}, \quad V_{\mathrm{GE}}= \pm 15 \mathrm{~V}, \quad T_{\mathrm{vj}}=25^{\circ} \mathrm{C}$

[Inverter]
Switching time vs. Gate resistance (typ.)
$V_{\mathrm{CC}}=900 \mathrm{~V}, I_{\mathrm{C}}=200 \mathrm{~A}, \quad V_{\mathrm{GE}}= \pm 15 \mathrm{~V}, \quad T_{\mathrm{Vj}}=175^{\circ} \mathrm{C}$ 10000
[əəsu] әш!! би!чข!!мS

400

[Inverter]
Forward current vs. Forward voltage (typ.)
chip

[Inverter]
FWD safe operation area (max.)
$T_{v j}=175^{\circ} \mathrm{C}$

[Inverter]
Reverse recovery characteristics (typ.)
$V_{\mathrm{CC}}=900 \mathrm{~V}, \quad V_{\mathrm{GE}}= \pm 15 \mathrm{~V}, \quad R_{\mathrm{G}}=0.8 \Omega$

[Inverter]
Transient thermal resistance(max.)

Warnings

1. This Catalog contains the product specifications, characteristics, data, materials, and structures as of 7/2019. The contents are subject to change without notice for specification changes or other reasons. When using a product listed in this Catalog, be sure to obtain the latest specifications.
2. All applications described in this Catalog exemplify the use of Fuji's products for your reference only. No right or license, either express or implied, under any patent, copyright, trade secret or other intellectual property right owned by Fuji Electric Co., Ltd. is (or shall be deemed) granted. Fuji Electric Co., Ltd. makes no representation or warranty, whether express or implied, relating to the infringement or alleged infringement of other's intellectual property rights which may arise from the use of the applications described herein.
3. Although Fuji Electric Co., Ltd. is enhancing product quality and reliability, a small percentage of semiconductor products may become faulty. When using Fuji Electric semiconductor products in your equipment, you are requested to take adequate safety measures to prevent the equipment from causing a physical injury, fire, or other problem if any of the products become faulty. It is recommended to make your design fail-safe, flame retardant, and free of malfunction.
4. The products introduced in this Catalog are intended for use in the following electronic and electrical equipment which has normal reliability requirements.
-Computers - OA equipment •Communications equipment (terminal devices) •Measurement equipment
-Machine tools •Audiovisual equipment •Electrical home appliances •Personal equipment • Industrial robots etc.
5. If you need to use a product in this Catalog for equipment requiring higher reliability than normal, such as for the equipment listed below, it is imperative to contact Fuji Electric Co., Ltd. to obtain prior approval. When using these products for such equipment, take adequate measures such as a backup system to prevent the equipment from malfunctioning even if a Fuji's product incorporated in the equipment becomes faulty.

- Transportation equipment (mounted on cars and ships) •Trunk communications equipment
-Traffic-signal control equipment -Gas leakage detectors with an auto-shut-off feature
-Emergency equipment for responding to disasters and anti-burglary devices • Safety devices - Medical equipment

6. Do not use products in this Catalog for the equipment requiring strict reliability such as the following and equivalents to strategic equipment (without limitation).
-Space equipment •Aeronautic equipment •Nuclear control equipment •Submarine repeater equipment
7. Copyright (c)1996-2019 by Fuji Electric Co., Ltd. All rights reserved.

No part of this Catalog may be reproduced in any form or by any means without the express permission of Fuji Electric Co., Ltd.
8. If you have any question about any portion in this Catalog, ask Fuji Electric Co., Ltd. or its sales agents before using the product. Neither Fuji Electric Co., Ltd. nor its agents shall be liable for any injury caused by any use of the products not in accordance with instructions set forth herein.

